Thèses soutenues
2019 |
|
Beeman, J. C. (2019). The role of greenhouse gases in past climatic variations : an approach based on accurate chronologies of deep polar ice cores. Ph.D. thesis, Université Grenoble Alpes, Grenoble.
Abstract: Deep polar ice cores contain records of both past climate and trapped air that reflects past atmospheric compositions, notably of greenhouse gases. This record allows us to investigate the role of greenhouse gases in climate variations over eight glacial-interglacial cycles. The ice core record, like all paleoclimate records, contains uncertainties associated both with the relationships between proxies and climate variables, and with the chronologies of the records contained in the ice and trapped air bubbles. In this thesis, we develop a framework, based on Bayesian inverse modeling and the evaluation of complex probability densities, to accurately treat uncertainty in the ice core paleoclimate record. Using this framework, we develop two studies, the first about Antarctic Temperature and CO2 during the last deglaciation, and the second developing a Bayesian synchronization method for ice cores. In the first study, we use inverse modeling to identify the probabilities of piecewise linear fits to CO2 and a stack of Antarctic Temperature records from five ice cores, along with the individual temperature records from each core, over the last deglacial warming, known as Termination 1. Using the nodes, or change points in the piecewise linear fits accepted during the stochastic sampling of the posterior probability density, we discuss the timings of millenial-scale changes in trend in the series, and calculate the phasings between coherent changes. We find that the phasing between Antarctic Temperature and CO2 likely varied, though the response times remain within a range of ~500 years from synchrony, both between events during the deglaciation and accross the individual ice core records. This result indicates both regional-scale complexity and modulations or variations in the mechanisms linking Antarctic temperature and CO2 accross the deglaciation. In the second study, we develop a Bayesian method to synchronize ice cores using corresponding time series in the IceChrono inverse chronological model. Tests show that this method is able to accurately synchronize CH4 series, and is capable of including external chronological observations and prior information about the glaciological characteristics at the coring site. The method is continuous and objective, bringing a new degree of accuracy and precision to the use of synchronization in ice core chronologies.
|
![]() ![]() |
Fourteau, K. (2019). Physics of pore closure in polar firn, and its implications for the understanding of past feedbacks between climate and carbon cycle. Ph.D. thesis, Université Grenoble Alpes, Grenoble.
Abstract: Les carottes de glace sont des archive climatiques sans équivalents : les gaz contenus dans la glace de la région aride de l'Antarctique de l'Est permettent de reconstruire les compositions atmosphériques au cours des derniers 800 000 ans. Les gaz sont piégés pendant la compaction de la neige tombée sur l'inlandsis. Dans la neige en surface, aussi appelée névé, le réseau poreux interstitiel diminue jusqu'au pincement des pores qui piègent définitivement les gaz dans la glace. Cependant, le processus même de piégeage des gaz impacte l'enregistrement des signaux mesurés dans les carottes. L'interprétation de ces signaux demande de caractériser en quoi ils diffèrent de l'atmosphère passée. Le but de cette thèse est d'étudier deux effets altérant les enregistrements gaz des carottes, le piégeage par couches qui crée des irrégularités stratigraphiques et le lissage qui retire la variabilité rapide de l'enregistrement. Une attention particulière est portée sur les glaces de l'Antarctique de l'Est.Ce travail démarre avec l'étude multi-traceurs d'une carotte de névé forée au site de Lock-In en Antarctique de l'Est. Les résultats montrent que le bas du névé est un empilement hétérogène de strates se densifiant suivant une même évolution de leur réseau poreux. La stratification reflète simplement que certaines strates sont en avance (ou retard) dans leur densification, mais la fermeture des pores est similaire dans toutes les strates. Notamment, les strates contiennent toutes des quantités similaires de gaz, comme le montrent des mesures directes. Des mesures de chimie à haute-résolution montrent que les strates denses ont une haute conductivité liquide, suggérant que la stratification profonde du névé est due à une densification préférentielle induite par des impuretés.Ces connaissances sont appliquées pour étudier des variations centimétriques mesurées dans les signaux méthane des carottes de glace. Pour cette thèse, nous utilisons 6 nouveaux signaux méthane à haute résolution, mesurés dans des carottes d'Antarctique de l'Est à l'IGE. On montre que ces variations sont des artefacts dus aux irrégularités stratigraphiques causées par des strates denses se fermant en avance. Un modèle est proposé pour simuler la présence irrégulière de ces artefacts.Une nouvelle méthode est proposée pour estimer la distribution en âge des gaz dans les carottes, qui à l'origine du lissage des variations atmosphériques rapides. Elle peut être appliquée aux carottes de la dernière période glaciaire, et donne pour la première fois des indications quantitatives sur le lissage des signaux dans les carottes à très faible accumulation. Nos résultats montrent qu'en Antarctique de l'Est, le lissage est peu sensible au taux d'accumulation, et que plus d'information que prévu est préservée lors du piégeage.Enfin, nous présentons le développement d'un nouveau type de modèle micro-mécanique du névé. Son but est de simuler l'évolution des pores dans une strate de névé. Un tel modèle pourrait être utilisé pour contraindre le piégeage des gaz dans la glace, dans des conditions de période glaciaire.
Keywords: Glaciology; Climate; Firn densification; Physics; Porosity; Glaciologie; Climatologie; Densification du névé; Physique; Porosité
|
![]() ![]() ![]() |
Shin, J. (2019). Millennial-scale atmospheric CO2 variations during the Marine Isotope Stage 6. Ph.D. thesis, Université Grenoble Alpes, .
Abstract: The main objective of this thesis is to understand the millennial variability of atmospheric CO2 during the Marine Isotope Stage 6 (MIS 6), the penultimate glacial, period (185-135 kyr BP). During the early MIS 6 period (185-160 kyr BP), 6 millennial-scale climate oscillations can be observed in proxy records of Antarctic temperature, the bipolar see-saw phenomenon in the North Atlantic region, and Monsoon intensity in low latitudes. An intensified hydrological cycle and iceberg calving in the North Atlantic may have impacted on the Atlantic Meridional Overturning Circulation during MIS 6 (Margari et al., 2010). Atmospheric CO2 reconstructions from Antarctic ice cores can provide key information on how atmospheric CO2 concentrations are linked to millennial-scale climate changes. However, existing CO2 records from the Vostok ice core do not show the millennial variability due to the lack of suitable temporal resolution and precision. To understand atmospheric CO2 variability during MIS 6, a precision of less than 2 ppm is mandatory, because there is a possibility that we could observe small CO2 variability of less than 5 ppm during the smaller Antarctic isotope maxima events as observed during the last glacial period (Ahn and Brook, 2014; Bereiter et al., 2012).To investigate how atmospheric CO2 is related with climate change on millennial time scales during MIS 6, we reconstructed 150 samples of atmospheric CO2 data from the EPICA Dome C (EDC) ice core during the MIS 6 period (189.4-135.4 kyr BP). One minor and five major variabilities of atmospheric CO2 during the early MIS 6 period (189-160 kyr BP) were found. These variabilities are highly matched with Antarctic temperature. During the short stadials in the North Atlantic, atmospheric CO2 variations are negligible and decoupled with temperature variations in Dome C. During this period, the strength of upwelling in the southern ocean might not be sufficient to impact on atmospheric CO2. In addition, 2 modes of CO2 variations are present in the MIS 6 period. Carbon dioxide maxima (CDM) 6 lags abrupt warming in the Northern Hemisphere by only 100±360 yrs, while the lags for CDM 3 and 4 are much longer, 1,100±280 yrs on average. Theses 2 modes of CO2 variations might be related with a mode change of AMOC from the earliest MIS 6 to MIS 6.5. These two phenomena also are observed during the last glacial period. However, the limited available proxy data permit only an exploratory discussion of the mechanisms responsible for CO2 variability during MIS6. Because the boundary conditions of the last glacial period cannot be applied to MIS 6, additional proxy data and multiple modelling studies conducted during MIS 6 period are needed.
|
![]() ![]() |
2018 |
|
Goursaud, S. (2018). Recent climatic variability of Antarctica : contribution of the records from firn cores. Ph.D. thesis, Université Grenoble Alpes, . |
![]() ![]() ![]() |
2017 |
|
Bourgeois, I. (2017). Dépôt des nitrates atmosphériques sur les prairies subalpines du Lautaret. Ph.D. thesis, Université Grenoble Alpes, Grenoble.
Abstract: L'accroissement des dépôts de nitrate atmosphérique (NO3-atm) sur les bassins versants d'altitude, limités en ressources, entraîne des changements nets de disponibilité d'azote. Ces apports modifient la diversité biologique (végétation, plantes), les processus des sols liés à l'azote et conduisent à l'eutrophisation des cours d'eau. A terme, l'impact sur les populations humaines se traduira par la perte d'importants services fournis par ces écosystèmes (alimentation en eau, qualité du fourrage, contrôle de l'érosion, biodiversité). Si les effets des dépôts de NO3-atm sur les bassins versants pauvres en azote sont maintenant bien documentés, il n'en reste pas moins à comprendre les processus régissant la rétention de NO3-atm dans les écosystèmes de montagne. Pour ce faire, la variabilité spatio-temporelle de la répartition du NO3-atm dans tous les compartiments subalpins est ici étudiée en utilisant un traceur multi-isotopique (17O, 18O, 15N) du NO3-. L'importante proportion de NO3-atm dans les cours d'eau de montagne, tout au long de l'année et plus particulièrement à la fonte des neiges, laisse à penser que les bassins versants sont cinétiquement saturés en azote. La composition isotopique du NO3- dans les eaux de surface illustre la transformation rapide de l'ammonium de la neige et confirme que la fonte des neiges est une période cruciale du cycle de l'azote dans les montagnes enneigées. La proportion de NO3-atm dans les sols varie, quant à elle, en fonction du type d'occupation des sols et des propriétés biotiques et abiotiques afférentes. Le suivi de la végétation a montré une forte teneur en NO3-atm dans les tissus, par assimilation racinaire et foliaire. Ces avancées scientifiques permettront, à terme, de mieux comprendre comment les dépôts de NO3-atm affectent l'environnement.
|
![]() ![]() |
Breant, C. (2017). Variabilité régionale de la densification de la neige polaire lors des transitions climatiques. Ph.D. thesis, Université Grenoble Alpes, Grenoble.
Abstract: Le déphasage entre augmentation de température et augmentation de gaz à effet de serre dans l'atmosphère lors des grandes transitions climatiques passées est estimé grâce aux mesures effectuées dans les carottes de glace polaires dans la phase glace pour la température et dans la phase gaz (bulles d'air piégées) pour la concentration en gaz à effet de serre. Ce déphasage est encore mal contraint et, pour résoudre ce problème, il est nécessaire de mieux comprendre le processus mécanique de transformation de neige en glace près de la surface de la calotte (centaine de mètres supérieurs, le névé). En l'absence de fusion, la transformation de la neige (matériau à porosité ouverte en contact avec l'atmosphère) en glace (matériau contenant des bulles d'air isolées) s'effectue progressivement sous l'action des gradients de température près de la surface, puis sous l'action du poids des couches de neige situées au-dessus. Selon les conditions de température et précipitation, ce processus peut prendre quelques décennies à plusieurs millénaires et s'étend sur une centaine de mètres de profondeur. Il contrôle la différence d'âge entre la glace et les gaz qu'elle renferme. La prédiction de la profondeur de piégeage des gaz représente un enjeu majeur pour la paléoclimatologie en particulier sur la séquence des changements relatifs de température et de concentration en gaz à effet de serre.
Un modèle thermo-mécanique de densification de la neige a été conçu et développé au LGGE en intégrant la formulation des processus mécaniques, des propriétés thermiques, et des critères de piégeage des gaz. Les performances de ce modèle peuvent être testées et améliorées grâce à des études de structure de névés actuels (densité, rapport porosité ouverte/fermée, ...). Pour les périodes plus anciennes, des mesures d'isotopes des gaz inertes δ15N et δ40Ar) dans l'air piégé dans les carottes de glace polaire permettent d'obtenir des informations directes sur les variations passées de la structure du névé (e.g. épaisseur de la zone diffusive). Les larges divergences observées en Antarctique entre les sorties de modèle de densification et les mesures isotopiques de gaz piégé dans la glace génèrent une grande incertitude sur les reconstructions climatiques passées et comprendre ce désaccord est un défi majeur de la paleoclimatologie actuelle. Dans le cadre de cette thèse, nous avons pris en compte les influences de la dépendance à la température des énergies d'activation et des impuretés chimiques (poussières) sur la vitesse de densification. Cela a permis de concilier les données et le modèle. Les résultats du modèle modifié sont globalement cohérents avec les profils de densité mesurés pour des névés actuels et les données d'isotopes de gaz inertes pour les déglaciations (aussi appelées terminaisons). Nous avons également présenté de nouvelles mesures à haute résolution de δ15N et δ40Ar pour les terminaisons 2 (129-138 ka) et 3 (243-251 ka) des carottes antarctiques de Dôme C et Vostok. Nous avons montré que les différentes évolutions de δ15N entre les différents sites et différentes déglaciations s'expliquaient largement par les différences de taux d'accumulation qui contrôlent la profondeur de transition neige – glace. Nous avons aussi montré que l'utilisation des isotopes de l'air était un complément important à l'utilisation des isotopes de l'eau pour contraindre la dynamique climatique locale en Antarctique de l'Est lors des déglaciations. Enfin, comme nous avons montré que les conditions locales de température et d'accumulation, généralement reconstruites par les teneurs isotopiques en Antarctique et la concentration de certaines espèces chimiques, sont des paramètres clefs pour la densification du névé, nous avons exploré comment composition isotopique de l'eau et composition chimique sont liées en Antarctique à la fois lors des déglaciations et à l'échelle journalière grâce à une mission de terrain que j'ai effectuée à la base Antarctique de Dumont d'Urville. |
![]() ![]() |
2014 |
|
Crichton, C. (2014). The role of permafrost soils in the global carbon cycle on the timescales of centuries to multi-millennia. A modelling study. Ph.D. thesis, Université de Grenoble, Grenoble.
Abstract: This study aimed to develop a permafrost-carbon dynamic model to incorporate into the CLIMBER-2 Earth system model and to carry out simulations with a view to contributing to the knowledge of the carbon cycle. The work would, for the first time, allow a fully coupled modelling study with an earth system model which included dynamic atmosphere, ocean, vegetation and cryosphere components including frozen land to study paleoclimates. The availability of recent ice core data for CO2 and ?13 C of atmospheric CO2 was to provide a means of validating model findings to identify whether a permafrost-carbon dynamic could have played a significant role in past changing climates.The deep Southern Ocean is an area of particular interest for glacial-interglacial CO2 variability, and current modelling efforts aim to recreate the observed CO2 changes using ocean mechanisms. These are often related to deep southern ocean carbon storage and release. So far the terrestrial biosphere has not been well considered in transient simulations of the carbon cycle in Earth system models.A simplified permafrost-carbon mechanism was developed and validated and tuned using data from termination 1. It was found that in order to reproduce atmospheric CO2 and ?13 C data (for atmosphere and ocean) during the termination, a combination of glacial ocean mechanisms and the permafrost-carbon mechanism was required. Following this finding, several glacial cycles were modelled to study the sensitivity of the permafrost carbon mechanisms to CO2 , ice sheets and insolation. Ice sheet extent was found to be particularly important in controlling the land area available for permafrost and therefore the carbon dynamics of permafrost-carbon. The permafrost-carbon mechanism, via carbon release from thawing soils responding to increasing summer insolation in higher northern latitudes, was found to very likely be the source of initial rises in CO2 on glacial terminations.Termination 1 CO2 data could be well reproduced, including the B-A/YD CO2 plateau, when fresh water forcing was applied to the north Atlantic. Fresh water forcing experiments pointed to the importance of the permafrost-carbon mechanism in fast changing climates. Very fast increases in atmospheric CO2 levels may be explained by fast soil-carbon release responding to increased heat transport to the northern hemisphere on AMOC resumption following an AMOC switch-off/reduction event, such as D/O events seen in the Greenland ?18O record. Future climate change projections represent fast warming events. Driving the model by emissions projections (RCP database) predicted increased peak CO2 and much longer term elevated CO2 levels relative to model outputs which did not include the permafrost carbon feedback.Analysis of ocean ?13 C must take into account the dynamics of permafrost and land carbon in general and its effect on atmospheric ?13 C levels. If this is not taken into account then ocean circulation may be over-invoked in attempting to explain changes in ocean ?13 C and atmospheric CO2 . The findings in this work highlight that it is essential to consider land carbon dynamics when interpreting paleo-indicators for the carbon cycle.The permafrost-carbon mechanism reacts to temperature changes and amplifies the carbon cycle’s response. It is strongly dependent not only on energy input (that determines soil temperature and permafrost location), but also on the area of land available globally on which it can exist. In order to properly model and understand the Earth system response to forcing in both future and past climates, the permafrost-carbon feedback mechanism is an important system component. This work has been a first step to address the role that the land cryosphere plays in the carbon cycle and climate system on long timescales, and further studies are essential.
Keywords: Permafrost; carbon cycle; climate modelling
|
![]() ![]() |
Lim, S. (2014). Variability and trends of black carbon in Europe over the last 140 years retrieved from a Caucasian ice core. Ph.D. thesis, Université de Grenoble, Grenoble. |
![]() ![]() |