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Since important decisions
must rely on simulations,

it is essential that its validity be tested,
and that its advocates be able to describe

the level of authentic representation
which they achieved.

Summer Computer Simulation Conference (1975),
cited by Richard Hamming (1997)



  

Motivations for a probabilistic approach

The deterministic approach is not always sufficient
to describe the dynamical behaviour of the system

Comparison between simulations and observations
is easier with the probabilistic approach

A good knowledge of model accuracy
is necessary to solve data assimilation problems
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Introduction



  

Sources of uncertainties in ocean models

●Even if the dynamics of U can be assumed deterministic,
the system A alone cannot be assumed deterministic.

●To obtain a deterministic model for A, one must assumed, either
that B is known (→ atmospheric forcing), or
that the effect of B can be parameterized (→ paramétrisation

of unresolved scales or unresolved biologic diversity).

                         → B is the main source of uncertainty in the model.



  

Uncertainty, as a key component of our systems

What are the uncertain components
of our systems ?

How to describe uncertainties ?

How does it participate
to the solution of inverse problems ?
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Explicit simulation of uncertainties



  

A first simple implementation
based on autoregressive processes (1)

At every model grid point (in 2D or 3D), generate a set of
independent Gaussian autoregressive processes:

where w is a Gaussian white noise (→ order 1 process)
or an autoregressive process of order n-1 (→ order n process)
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Parameters a, b, c

to specify:

mean, standard deviation
and correlation timescale

Method: explicitly simulate uncertainties in the model
using random numbers



  

Introduce a spatial
correlation structure

by applying a spatial filter
to the map of 

autoregressive processes:

→ This provides a generic technical way of implementing
a wide range of stochastic parameterizations

Modify the marginal
probability distributions

by applying anamorphosis
transformation to every 

individual Gaussian variable: 

(filtering operator)

(elliptic equation)

which can easily be made 
flow dependent if needed

(nonlinear function)

for instance to transform the 
Gaussian variables into 

lognormal or gamma 
variables if positive noise is 

needed

A first simple implementation
based on autoregressive processes (2)



  

Technological approach: a stochastic module in NEMO

These processes are generated using a new module in NEMO,
and can be used in any component of the model (Brankart et al., 2015):

circulation model, ecosystem model, sea ice model

→ Generic and flexible technological approach
→ Model independent implementation

→ Possible to simulate many kinds of uncertainty



  

List of uncertainties that have been implemented in NEMO
using this generic stochastic module

In the circulation model

In the ecosystem model

In the sea-ice model

Uncertainties in ice strength (gamma distribution)
Uncertainties in ice/atmosphere drag (gamma distribution)

Uncertainties in ice/ocean drag (gamma distribution)
Uncertainties in ice albedo (beta distribution)

Effect of unresolved scales in the equation of state
Uncertainties in the parameterized tendencies (SPPT scheme)

Uncertainties in the horizontal momentum diffusion
Uncertainties in vertical diffusion (lognormal distribution)

Uncertainties in bulk parameters C
D
, C

E
, C

H
 (gamma distribution)

Effect of unresolved scales in the SMS terms of the equations
Uncertainties in model parameters (primary production and grazing)
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Stochastic circulation model



  

Uncertainties in the computation of density

In the model, the large-scale density is computed form large-scale 
temperature and salinity, using the sea-water equation of state.

Because of the nonlinearity of the equation of state,
unresolved scales produce an average effect on density.

(a)
Mixing waters of equal 

density but different T&S
systematically increases

density (cabbeling)

(b)
Averaging T&S equations

systematically 
overestimates density (in a 

fluctuating,
non-deterministic way)



  

Stochastic equation of state
for the large scales

Stochastic parameterization (Brankart, 2015)

using a set of random T&S fluctuations
DT

i
 et DS

i
 , i=1,...,p

to simulate unresolved T&S fluctuations

Correction Dr applied in the thermal wind equation, as in the 

semi-prognostic method of Greatbatch et al. (2004)

No effect if the equation of state is linear.
Proportional to the square of unresolved fluctuations.

No direct modification of T&S; no enhanced diapycnal mixing.
T&S only modified indirectly through a modification

of the main currents



  

Random walks to simulate unresolved 
temperature and salinity fluctuations

Computation of the random fluctuations DT
i
 et DS

i

as a scalar product of the local gradient with random 
walks x

i

Random walks Assumptions
AR1 random processes

uncorrelated on the horizontal

fully correlated
along the vertical

5-day time correlation

horizontal std: 2-3 grid points
vertical std: <1 grid point



  

Mean sea surface elevation (standard)



  

Mean sea surface elevation (stochastic)



  

Mean sea surface elevation difference



  

Averaged SST & SSS difference

Modification
of the mean flow

Modification
of the mean
SST  & SSS

Modification
of air/sea

interactions



  

→ assimilation of altimetric data (Candille et al., 2015)

SSH pdf
ensemble NATL025:

3 members among 96

Time
evolution
of the pdf

from June 2005 to
December 2006

Ensemble of mesoscale flows

without assimilation with assimilation of Jason1 and Envisat

→ comparison to observation (rank histogram, CRPS score, etc.)

Rank histogram
to check
relability

Map of ranks
of JASON

altimetric data
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Stochastic biogeochemical model



  

Stochastic biogeochemical model

Multiple sources of uncertainty in ecosystem model:
unresolved biological diversity, unresolved scales, etc.

→ Considerable effect on the mean behaviour of the system
→ Increase of patchiness (↔ ocean colour data)

Unresolved diversity
multiplicative noise
in model parameters

Unresolved scales
stochastic processes
explicitly simulating

unresolved fluctuations of C
i

Assumptions

perturb 8 parameters governing
primary production and grazing

fully correlated
along the vertical

30-day time correlation



  

Ensemble simulation of the ecosystem

→ description of biogeochemical uncertainties (Garnier et al., 2016)

Probability distribution of chlorophyll concentration
as simulated here by ensemble NATL025/PISCES

with stochastic parameterization of uncertainty: 4 members among 50

member 1 member 2 member 3 member 4

Time evolution
of the pdf

for phtyoplankton

from January to June 2005



  

Comparison to ocean colour observations

Rank of SeaWifs observations
in the ensemble simulation

(May 2005)

Rank histogram for SeaWifs
over the whole domain

The ensemble spread is already
sufficient to include more than 80% of 

the observations (accounting
for a 30% observation error)

The ensemble is not far from being 
reliable, even if still underdispersive

(too many observations in the external
ranges of the ensemble)

→ objectively test the consistency of simulations as compared to observations
→ prerequisite to ocean colour data assimilation
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Conclusions



  

Probabilistic model and ensemble simulations

The NEMO model becomes probabilistic;
il is seen as a complex system,

built up from uncertain components

→ The goal of ocean modelers is then to build a model
as informative as possible at the lesser cost.

This probabilistic description requires 
ensemble simulations

→ Objective comparison between simulations and observations

→ Deal with model uncertainty in ocean data assimilation systems



  

An appropriate simulation of uncertainty is necessary
to make the link between model, observations,

and data assimilation systems

Uncertainty is bound to become
a key constituent of the systems

that we are using in oceanography,
not something that can be thought

separately from the results

Properly dealing with uncertainty will require
an integrated engineering approach

at the interface between oceanography
and applied mathematics



  

Error is viewed therefore
not as an extraneous and

misdirected of misdirecting accident,
but as an essential part

of the process under consideration.

John von Neuman (1956),
in « Probabilistic logics and the synthesis of

reliable organisms from unreliable components ».
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