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Since important decisions
must rely on simulations,

it is essential that its validity be tested,
and that its advocates be able to describe

the level of authentic representation
which they achieved.

Summer Computer Simulation Conference (1975),
cited by Richard Hamming (1997)
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Introduction



  

The 3 rules of system engineering
(from Richard Hamming, 1997: The Art of Doing  Science and Engineering)

Rule 1: If you optimize the components
you will probably ruin the system performance. 

Rule 2 : Part of systems engineering design is to prepare
for changes so that they can be gracefully made

and still not degrade the other parts.

Rule 3: The closer you meet the specifications
the worse the performance when overloaded

Acknowledge that the components of the system are imperfect. 
The emerging performance of the system is what matters.

Do not look for the best model, make it suitable to the system.

Do not think that you will find the final solution to the problem.
Be prepared to involve more complex components:

unexpected model dynamics or observation operators.

Do not build a system that is specifically and optimally designed
for the present model and present observations.

Do not optimize your response to end-users' requests,
but prepare to meet their future needs.



  

Uncertainty, as a key feature of our systems

What are the uncertain components
of our systems ?

How to describe uncertainties ?

How does it participate
to the solution of assimilation problems ?



  

2

Uncertainties in the system



  

Sources of uncertainties in ocean models

●Even if the dynamics of U can be assumed deterministic,
the system A alone cannot be assumed deterministic.

●To obtain a deterministic model for A, one must assumed, either
that B is known (→ atmospheric forcing), or
that the effect of B can be parameterized (→ paramétrisation

of unresolved scales or unresolved biologic diversity).

      → B is always an essential source of uncertainty in the model.



  

From deterministic to probabilistic ocean simulations

Stochastic ocean dynamics, with explicit simulation of uncertainties

Fokker-Planck equation, for the probability distribution p(x,t),

Conditioned to observations, to reduce uncertainties

where

where

by an appropriate data 
assimilation method



  

Example 1: intrinsic ocean variability (OCCIPUT project)

From Bessières et al., 2016. Dévelopment of a probabilistic system with NEMO at 
eddying resolution, Geoscientific Model Developments.

A 50-year and 50-member ensemble simulation
with a global 1/4° ocean model (NEMO/ORCA025)

Monthly mean temperature at 93 m depth
(in the Gulf Stream region)

The ensemble spread
only results

from small perturbations
in the initial conditions

→ study the chaotic 
behaviour of the system

All members see the 
same atmosphere

→ identify the variability
that is intrinsic

to the chaotic ocean

No data assimilation is involved in this study.
A probabilistic approach is needed to understand ocean dynamics.



  

→ assimilation of altimetric data (from Candille et al., 2015)

96-member ensemble 
with NATL025, with 
explicit simulation of 

uncertainties in the EOS

Time
evolution
of the pdf

from June 2005 to
December 2006

without assimilation with assimilation of Jason1 and Envisat

→ comparison to observation (rank histogram, CRPS score, etc.)

Rank histogram
to check
relability

Map of ranks
of JASON

altimetric data

Example 2: assimilation of altimetry (SANGOMA project)



  

Example 3: assimilation of ocean colour observations (1)

50-member ensemble simulation with NATL025/PISCES
with explicit simulation of uncertainties
(parameters and unresolved scales)

Prior probability distribution for chlorophyll concentration

member 1 member 2 member 3 member 4

Time evolution
of the pdf

for phytoplankton

From Garnier et al. 2016 (stochastic parametrization and probabilistic comparison to 
observations) and Santana Falcon et al. 2018, in prep. (assimilation of ocean colour)



  

Example 3: Comparison to ocean colour observations (2)

Rank of SeaWifs observations
in the ensemble simulation

(May 2005)

Rank histogram for SeaWifs
over the whole domain

The ensemble spread is already
sufficient to include more than 80% of 

the observations (accounting
for a 30% observation error)

The ensemble is not far from being 
reliable, even if still underdispersive

(too many observations in the external
ranges of the ensemble)

→ objectively test the consistency of simulations as compared to observations
→ prerequisite to ocean colour data assimilation



  

Uncertainties are inherent to ocean models

This is not just a trick to generate more spread
and make ensemble data assimilation work

As atmospheric models, ocean models
will become stochastic

to cope with dynamical uncertainties

Objective comparison to observations
(reliability, resolution)

and verification of the products

How to make stochastic parameterizations
more and more consistent
with real uncertainties ?

References: Buizza et al. 1999 (first ECMWF implementation), Berloff 2005,
Shutts 2005, Wilks 2005, Palmer al. 2005, 2009, 2014 (atmospheric developments), 

Juricke et al. 2013 (sea ice), Brankart 2013 (EOS), Brankart et al. 2015 (NEMO implementation)
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Non-Gaussian issues



  

Anamorphosis transformation

References: Wackernagel 2003 (multivariate geostatistics),
Bertino et al. 2003, Simon et al. 2009 (first ocean application of the method),
Béal et al. 2010, Brankart et al. 2012 (simplified piecewise linear algorithm)

A nonlinear change of variables to deal
with the non-Gaussianity of the marginal distribution

Transform X into Z:
Z=G-1[F(X)], X=F-1[G(Z)]

where
F is the cdf of X

G is the cdf of N(0,1)

Many ways of estimating the 
transformation function

Simple piecewise linear algorithm:
compute ensemble quantiles,
linearly interpolate bewteen

the corresponding quantiles of N(0,1)



  

Example 1: in the white ocean

Application to sea ice concentration in the CREG4 model configuration

After anamorphosis:
~ N(0,1) everywhere

Prior ensemble
(2 members shown)

After backward:
transformation

Updated
ensemble

The prior ensemble becomes marginally Gaussian (with mean=0 and std=1).
Updated variables are kept inside their bounds (here between 0 and 1).



  

Example 2: in the green ocean

Application to NATL025/PISCES biogeochemical fields

Ensemble deciles for phytoplankton and 
nitrate over one year

Marginal distributions can be
strongly non-Gaussian

There can be large probability 
densities close to the bound

Transformation
of joint distribution

for chlorophyle
and temperature

Updated ensemble
(in blue) assuming a 
perfect observation

of chlorophyle

Anamorphosis improves the linear dependency between the 2 variables.
The spread of the updated ensemble is thus smaller.

It is like using a nonparametric measure of correlation.



  

Non-Gaussian behaviours are ubiquitous in the ocean

The anamorphosis transformation is cheap
(computation of quantiles of the ensemble)

A good way to deal with bounded variables
(→ biogeochemical and sea ice variables)

Often improves linear correlations

Non-Gaussianity of joint distributions
is still much more expensive to account for

(particle filters, MCMC algorithms,...)
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Multiscale issues



  

More and more degrees of freedom in the system

References: Zhou et al. 2008, Zhang et al. 2009 (spatial localization, using several scales), 
Buehner 2012 (spatial/spectral localization, using wavelet transform),

Tissier et al. 2018, in prep. (spectral localization, using spherical harmonics).

Covariance localization is needed
to make the probem tractable

The long-range correlation structure
for the large-scale signal
is not used by the system

All scales Large scales

Ensemble correlation structure

→ How can we perform a seamless observational update
from the largest scales to the finest scales ?

Apply transformation operators
to separate scales

Localization is applied
to trandormed variables

→ Direct control of the large scales (usually well observed)



  

Example 1: in the blue ocean (1)

From Tissier et al., 2016. Mutliscale ensemble observational update combining 
spatial and spectral localization, Ocean Science, in preparation.

Twin experiments with the CREG4 model configuration

Ensemble std True anomaly

Transformation

Transformation

by projection of anomalies
on the spherical harmonics



  

Example 1: in the blue ocean (2)

From Tissier et al., 2016. Mutliscale ensemble observational update combining 
spatial and spectral localization, Ocean Science, in preparation.

Result of the observational update

True anomaly Spatial localization
Spatial+spectral 

localization

Error reduction
according
to scale

Spectral localization
for the large scales

Spatial localization
for the small scales

→ Multiscale algorithm



  

Example 2: in the green ocean

Application to NATL025/PISCES biogeochemical fields

Phytoplankton: heterogeneous statistics, non-Gaussian, limited by bounds
→ scale separation is possible if anamorphosis is applied

Phytoplankton
(2 members shown)

After anamorphosis:
~ N(0,1) everywhere

After scale separation
→ large scales

A

A
T

T



  

Example 3: in the white ocean

Application to sea ice concentration

A

T

A-1

The large structures (not exactly the large scales) are extracted
without going out of bounds and without problems with the ice edge



  

Scale separation to better use large-scale observations 

The spectral transformation is cheap
(if limited to large scales)

Explicit control of the large scales
with spectral localization

Before going to the smaller scales
with spatial localization

Applicable to non-Gaussian variables,
even limited by bounds,

providing anamorphosis is applied
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Conclusions



  

Uncertain model and observations → uncertain products

The model becomes non-deterministic;
il is seen as a complex system,

built up from uncertain components

→ The goal of ocean modelers is then to build a model
as informative as possible at the lesser cost.

Uncertainty must be represented
in ocean data assimilation systems

→Adjust the system to the features of the probability distributions
(non-Gaussian behaviour, multiscale correlation structure)

→ Objective comparison between simulations and observations

→ Compute nonlinear diagnostic from the products 



  

What desirable features for the assimilation systems ?

Uncertainty is bound to become
a key feature of the systems

that we are using in oceanography,
not something that can be thought

separately from the results

→ Be prepared for stochastic model dynamics, stochastic 
observation operator, stochastic forcing, stochastic coupling,...

→ Be prepared to increasing dynamical complexity:
more components (optical module, elasto-fragile rheology,...),

more scales, more non-Gaussian behaviours,...
Be prepared to smoothly upgrade the system accordingly. 

→ The real world is uncertain;
end-users live in the real world;

be prepared for their need of reliable information
about uncertainty in the products.



  

Error is viewed therefore
not as an extraneous and

misdirected or misdirecting accident,
but as an essential part

of the process under consideration.

John von Neuman (1956),
in « Probabilistic logics and the synthesis of

reliable organisms from unreliable components ».


