Information brought by inverse methods: a thermodynamic analogy

Jean-Michel Brankart

Thermodynamic analogy

S: information gain or entropy reduction obtained from the inversion system

E: energy used by the system

Temperature of the system:

$$\frac{1}{T} = \frac{dS}{dE}$$

How much information do we gain if we increase the energy supply

→ Optimize the system by flowing energy
from « warm » components to « cool » components

A « global warming » of science ?

lowest T ever?

highest T ever?

→ More and more energy is needed to keep gaining information about nature

Which inversion method to keep the « temperature » of the system as low as possible ?

- → what balance between model resolution and ensemble size?
- → what balance between « first principles » and « data driven » approaches ?
 - → what balance between resolving processes and parameterizing uncertainties?
 - → what balance between high-energy exact processors and low-energy inexact computation ?
 - → what balance between brute-force and creative solutions?
 - → what balance between human minds and artifical intelligence?