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Towards a simplified analysis and forecasting system
based on a prior ensemble model simulation

Approach:
→ Perform a prior ensemble simulation, with a state-of-the-art

coupled circulation/ecosystem model.
→ Condition this 4D ensemble on ocean colour observations

to obtain the ensemble analysis and forecast.

Features:
→ Decouple the complex models simulations and

the inversion problem → more flexibility in the system.
→ Focus the 4D inversion on a specific region and time window.

→ No need for full controllability of the complex model
(with so many state variables, when so few are observed).
No model restart from the analysis.

→ The complex model is not used anymore
as a direct constraint in the inverse problem,
but only indirectly through the prior ensemble



  

Inverse problem

We focus on the small 4D subregion (10° x 7°) at 1/4° resolution:

 40 X 40 grid points (31°W-21°W, 44°N-51°N) 
X 5 levels (depth: 0.5 m, 8 m, 23 m, 54 m, 108 m) 
X 60 days (April 21 to June 19, 2019)
X 10 tracers (among 24 in PISCES) = ~ 5 x 106 variables
X 40 members = ~ 2 x 108 values

Observation system:
L3 chlorophyll product, between April 21 and June 19, 2019
Obs. error std: 30% = ~ 105 observations
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The prior ensemble simulation

Performed in the context of the SEAMLESS EU-H2020 project.

Using a global configuration of NEMO/PISCES at 1/4° resolution.

→ 40 ensemble members.
→ Outputs every 5 days for the full model state.
→ Daily outputs for specific regions.

Probabilistic scores have been applied to evaluate
this ensemble simulation using L3 ocean colour observations.

→ Example of rank histogram
for the subregion used
as an example below.

→ In the North Atlantic Drift:
      31°W-21°W, 44°N-51°N,

April 21 to June 19, 2019.



  

Method : an MCMC sampler
based on the Metropolis/Hastings algorithm

Sample the posterior pdf
for the evolution of the system

x (n ~ 5 x 106),
given observations yo ( p ~ 105)

p(x|yo) ~ pb(x)  p(yo|x)

Anamorphosis transformation
x' = A(x),   x = A-1(x')

to obtain marginally Gaussian x'
 (with mean=0 and variance=1):

p(x'|yo) ~ pb(x')  p[ yo | A-1(x') ]

Iterative method in 2 steps:

1. Propose pseudo-random perturbation of x' (with cost linear in n)
→ by modulation of an ensemble member with large-scale signals

( ~1011 pseudo-random directions of perturbations)
→ equivalent to a localization of the prior ensemble covariance

2. Accept/reject according to cost function: Jo = - log p[ yo | A-1(x') ]

Brankart J;-M., 2019 : Implicitly Localized MCMC Sampler to Cope With Non-local/Non-
linear Data Constraints in Large-Size Inverse Problems. Front. Appl. Math. Stat. 5:58.

Prior ensemble
(m=40 members)

Observation
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We use local
correlations only

Kept fully
general
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Results from the MCMC sampler:
ensemble analysis and forecast 

Time series of surface chlorophyll at 26.7°W 49.2°N

In black: prior ensemble simulations from NEMO/PISCES
In red: ensemble analysis using all L3 observations
In blue: ensemble analysis and forecast using L3 observations

until May 22  →  some forecast skill for about 10 days
 [Localization scales: ~0.8° on the horizontal and ~10 days in time] 
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Results from the MCMC sampler:
ensemble analysis for May 26, 2019
(using past and future observations)

Good fit to observations
(within obs. error bar)

CRPS resolution:
0.121 mg/m3

Optimality score: 1.02

L3 chlorophyll product



  

Results from the MCMC sampler:
ensemble analysis for May 26, 2019

(leaving out observation of May 26, 2019)

Obs. is independent.

CRPS reliability:
0.0047 mg/m3

CRPS resolution:
0.132 mg/m3

Optimality score: 1.01

L3 chlorophyll product



  

Results from the MCMC sampler:
1-day ensemble forecast for May 26, 2019

(i.e. using past observations only)

More uncertain...

CRPS reliability:
0.0089 mg/m3

CRPS resolution:
0.145 mg/m3

Optimality score: 0.99

L3 chlorophyll product



  

Results from the MCMC sampler:
4-day ensemble forecast for May 26, 2019
(i.e. using observations until May 22, 2019)

Even more uncertain...

CRPS reliability:
0.020 mg/m3

CRPS resolution:
0.191 mg/m3

Optimality score: 0.98

L3 chlorophyll product



  

Results from the MCMC sampler:
prior ensemble for May 26, 2019

(i.e. from the model only, without observations)

Very uncertain,
but quite reliable

CRPS reliability:
0.0077 mg/m3

CRPS resolution:
0.261 mg/m3

L3 chlorophyll product



  

Conclusions

A practical method to perform 4D ensemble analyses and forecasts

→ based on prior ensemble statistics
(marginal pdfs and local rank correlations)

→ coping with fully general observation constraint p(yo|x)
(nonlinear, non-Gaussian, nonlocal)

The focus is on sampling possibilities consistent with the observations.

To explore in SEAMLESS:

→ Results for non-observed variables (surface and subsurface)
→ Results in different regions/seasons
→ How to produce a yearly solution



  

Perspectives (more or less remote)

Reconstruction of surface circulation:
→ from altimetric observations 

→ possibly introducing a weak dynamical constraint in the cost function:

Including a tracer with an unknown parameter in the dynamics

→ most simple joint physical/biogeochemical data assimilation
with joint state and parameter estimation

Joint reconstruction of circulation and tracers:
→ from joint observation system, and
→ possibly introducing a joint dynamical constraint:

Conservation of
potential vorticity
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