Ensemble analysis and forecast using a newly developed MCMC sampler application to ocean colour satellite observations

Jean-Michel Brankart, Mikhail Popov, Emmanuel Cosme, Pierre Brasseur

IGE/MEOM Grenoble

Context: SEAMLESS EU-H2020 project

Towards a **simplified** analysis and forecasting system based on a prior ensemble model simulation

Approach:

- → Perform a **prior ensemble simulation**, with a state-of-the-art coupled circulation/ecosystem model.
- → Condition this 4D ensemble on ocean colour observations to obtain the ensemble analysis and forecast.

Features:

- → Decouple the complex models simulations and the inversion problem → more flexibility in the system.
- → Focus the 4D inversion on a **specific region and time window.**
- → No need for full controllability of the complex model (with so many state variables, when so few are observed). No model restart from the analysis.
- → The complex model is not used anymore as a direct constraint in the inverse problem, but only indirectly through the prior ensemble

Inverse problem

We **focus** on the small **4D subregion** $(10^{\circ} \times 7^{\circ})$ at $1/4^{\circ}$ resolution:

40 X 40 grid points (31°W-21°W, 44°N-51°N)

X 5 levels (depth: 0.5 m, 8 m, 23 m, 54 m, 108 m)

X 60 days (April 21 to June 19, 2019)

X 10 tracers (among 24 in PISCES) = $\sim 5 \times 10^6$ variables

X 40 members = $\sim 2 \times 10^8$ values

Observation system:

L3 chlorophyll product, between April 21 and June 19, 2019
Obs. error std: 30% = ~ 10⁵ observations

The prior ensemble simulation

Performed in the context of the SEAMLESS EU-H2020 project.

Using a global configuration of NEMO/PISCES at 1/4° resolution.

- \rightarrow 40 ensemble members.
- → Outputs every 5 days for the full model state.
- → Daily outputs for specific regions.

Probabilistic scores have been applied to evaluate this ensemble simulation using L3 ocean colour observations.

- → Example of rank histogram for the subregion used as an example below.
- → In the North Atlantic Drift: 31°W-21°W, 44°N-51°N, April 21 to June 19, 2019.

Method: an MCMC sampler based on the Metropolis/Hastings algorithm

Sample the posterior pdf

for the evolution of the system \mathbf{x} (n ~ 5 x 10⁶), given observations \mathbf{y}° (p ~ 10⁵)

$$p(\mathbf{x}|\mathbf{y}^{o}) \sim p^{b}(\mathbf{x}) p(\mathbf{y}^{o}|\mathbf{x})$$

Prior ensemble (m=40 members)

Observation constraint

Anamorphosis transformation

 $\mathbf{x'} = A(\mathbf{x}), \quad \mathbf{x} = A^{-1}(\mathbf{x'})$ to obtain marginally Gaussian $\mathbf{x'}$ (with mean=0 and variance=1):

$$p(x'|y^{\circ}) \sim p^{b}(x') p[y^{\circ}|A^{-1}(x')]$$

We use local correlations only

Kept fully general

Iterative method in 2 steps:

- 1. **Propose** pseudo-random perturbation of x' (with cost linear in n)
- → by modulation of an ensemble member with large-scale signals (~10¹¹ pseudo-random directions of perturbations)
 - → equivalent to a localization of the prior ensemble covariance
- 2. Accept/reject according to cost function: $J^{\circ} = -\log p[y^{\circ}|A^{-1}(x')]$

Brankart J;-M., 2019: Implicitly Localized MCMC Sampler to Cope With Non-local/Non-linear Data Constraints in Large-Size Inverse Problems. Front. Appl. Math. Stat. 5:58.

Method: an MCMC sampler based on the Metropolis/Hastings algorithm

Sample the posterior pdf

for the evolution of the system \mathbf{x} (n ~ 5 x 10⁶), given observations \mathbf{y}° (p ~ 10⁵)

$$p(\mathbf{x}|\mathbf{y}^{o}) \sim p^{b}(\mathbf{x}) p(\mathbf{y}^{o}|\mathbf{x})$$

Prior ensemble (m=40 members)

Observation constraint

Anamorphosis transformation

 $\mathbf{x'} = A(\mathbf{x}), \quad \mathbf{x} = A^{-1}(\mathbf{x'})$ to obtain marginally Gaussian $\mathbf{x'}$ (with mean=0 and variance=1):

$$p(x'|y^{\circ}) \sim p^{b}(x') p[y^{\circ}|A^{-1}(x')]$$

We use local correlations only

Kept fully general

Iterative method in 2 steps:

- 1. **Propose** pseudo-random perturbation of x' (with cost linear in n)
- → by modulation of an ensemble member with large-scale signals (~10¹¹ pseudo-random directions of perturbations)
 - → equivalent to a localization of the prior ensemble covariance
- 2. Accept/reject according to cost function: $J^{\circ} = -\log p[y^{\circ}|A^{-1}(x')]$

Brankart J;-M., 2019: Implicitly Localized MCMC Sampler to Cope With Non-local/Non-linear Data Constraints in Large-Size Inverse Problems. Front. Appl. Math. Stat. 5:58.

Results from the MCMC sampler: ensemble analysis and forecast

In black: prior ensemble simulations from NEMO/PISCES

In red: ensemble analysis using all L3 observations

In blue: ensemble analysis and forecast using L3 observations until May 22 → some forecast skill for about 10 days

[Localization scales: ~0.8° on the horizontal and ~10 days in time]

Results from the MCMC sampler: ensemble analysis for May 26, 2019 (using past and future observations)

Good fit to observations (within obs. error bar)

CRPS resolution: 0.121 mg/m3

Optimality score: 1.02

Results from the MCMC sampler: ensemble analysis for May 26, 2019 (leaving out observation of May 26, 2019)

Obs. is independent.

CRPS reliability: 0.0047 mg/m3

CRPS resolution: 0.132 mg/m3

Optimality score: 1.01

Results from the MCMC sampler: 1-day ensemble forecast for May 26, 2019 (i.e. using past observations only)

More uncertain...

CRPS reliability: 0.0089 mg/m3

CRPS resolution: 0.145 mg/m3

Optimality score: 0.99

Results from the MCMC sampler: **4-day ensemble forecast for May 26, 2019** (i.e. using observations until May 22, 2019)

Even more uncertain...

CRPS reliability: 0.020 mg/m3

CRPS resolution: 0.191 mg/m3

Optimality score: 0.98

Results from the MCMC sampler: prior ensemble for May 26, 2019

(i.e. from the model only, without observations)

Very uncertain, but quite reliable

CRPS reliability: 0.0077 mg/m3

CRPS resolution: 0.261 mg/m3

Conclusions

A practical method to perform **4D ensemble analyses and forecasts**

- → based on prior ensemble statistics (marginal pdfs and local rank correlations)
- → coping with fully general observation constraint p(y°|x) (nonlinear, non-Gaussian, nonlocal)

The focus is on **sampling possibilities** consistent with the observations.

To explore in SEAMLESS:

- → Results for non-observed variables (surface and subsurface)
- → Results in different regions/seasons
- → How to produce a yearly solution

Perspectives (more or less remote)

Reconstruction of surface circulation:

- → from altimetric observations
- → possibly introducing a weak dynamical constraint in the cost function:

$$J^{c} = \frac{1}{\sigma_{\psi}^{2}} \int_{\Omega} \left[\frac{D \left(\Delta \Psi + f \right)}{D t} \right]^{2} d\Omega$$

Conservation of potential vorticity

Joint reconstruction of circulation and tracers:

- → from joint observation system, and
- → possibly introducing a joint dynamical constraint:

$$J_{\frac{1}{2}} = \frac{4}{4} \int_{U} \left[\frac{D}{D} \left(\frac{D}{D} + \frac{1}{4} \right) \right]_{y} dy + \frac{1}{4} \int_{U} \left[\frac{D}{D} \right]_{y} dy$$

Including a tracer with an unknown parameter in the dynamics

→ most simple joint physical/biogeochemical data assimilation with joint state and parameter estimation